Interfaces Digitales para Actos en Vivo: Principos y Personalization Pontifica Universidad Javeriana

Gesture acquisition &
feedback

Sending, receiving and parsing serial and MIDI data
- Arduino <-> Pure Data

- Pure Data <-> other software

- Arduino <-> other software

John Sullivan

Centre for Interdisciplinary Research in Music Media and Technology
Input Devices and Music Interaction Laboratory
john.sullivan2@mail.mcgill.ca

Input Devices and
Music Interaction Laboratory

[lﬂ Centre for Interdisciplinary Research X% G : ll s aam Schulich School of Music
in Music Media and Technology Oy C 1 wawam_ £ cole de musique Schulich

IDMIL

mailto:john.sullivan2@mail.mcgill.ca

Note: Materials from my lectures (slides,
Pd patches, etc.) are online and can be

downloaded from:

e

Firefox File Edit View History Bookmarks Tools Window

&) John Sullivan / javeriana - GitL=: X

C ® htt itlab.com/jot

& GitL: Projects Groups Snippets Help

o
a

»

John Sullivan > javeriana > Details

J javeriana @
Project ID: 13117311

&8 No license. All rights reserved -0- 2 Commits ¥ 1Branch & 0 Tags

Search or jump to...

[286.3 MB Files

supplementary files for U. Javeriana Live Interfaces Summer Course, June/July 2019

(228 Sign in / Register

N @ o

master javeriana

%% adds Pure Data patches
v John Sullivan authored 8 hours ago

® README

Name Last commit

@8 Pure Data adds Pure Data patches
8 arduino initial commit

@ lecture_slides initial commit

[3 .gitignore initial commit

[README.md adds Pure Data patches

[README.md

History

Q Fin

Last update

8 hours ago

8 hours ago

8 hours ago

8 hours ago

8 hours ago

This repository contains the lecture slides and supplimentary files used in my lectures for the U. Javeriana Summer 2019 course on Live

Interface design.

Course info: http://escueladeverano.javerianaeducacioncontinua.com/audio-vivo/

Course Dirctor: Gustavo Ramirez (ramirez.g@javeriana.edu.co)

l-;'I'II;\ 1
download here

Resources: https://qgitlab.com/johnnyvenom/javeriana

1. Gesture acquisition with Arduino & Pd

Pulse Width Modulation

0% Duty Cycle - analogWrite(0)

|

25% Duty Cycle - analogWrite(64)

L1

50% Duty Cycle - analogWrite(127)

UL

75% Duty Cyc

e - analogWrite(191)
L

Sv
Ov L

i

100% Duty Cycle - analogWrite(255)
1

|

« A microcontroller (Arduino) has 2 types of pins for receiving (and

sending):
* Analog - can read continuous voltages between 0 and 5 volts
« Arduino analog range is 0 — 1023 (10 bit sampling ADCs)
« Pins AO- A5
» Sensors: potentiometer (knob), temperature sensor, fader, light sensor, etc.
» Digital - can read or write values 1 or 0 (HIGH or LOW)
« Sensors: buttons & switches

« Additionally digital pins 3, 5, 6, 9, 10, 11, 13 (on Leonardo) are equipped
with Pulse Width Modulation, allowing them to output analog values from O —
255. (Ex. dim an LED)

- Arduinos send and receive data from other devices via serial
communication (UART — universal asynchronous transmitter-
receiver) connected to another device via USB.

Resources: https://qgitlab.com/johnnyvenom/javeriana

Firmata and Pduino

* The next several slides cover the Pduino library for Pure Data.
Regrettably, due to an undocumented compatibility issue:

* Pduino is not compatible with Arduino Leonardo and
Windows.
- It does work running Leonardo with MacOS, however it can be
buggy.
* Alternatives:
* A) Use a different Arduino (Uno, for instance)

* B) Don’t use Pduino and use OSC for communicating between
Arduino and Pure Data (See Lecture 3).

Firmata and Pduino

» The fastest and easiest way to get sensor
data into Pure Data.

- Firmata: A protocol for communicating with
Arduino from a computer via serial port.
« A standard Firmata sketch is loaded onto the

Arduino, and all commands to control it are
send directly from software (Pure Data)

« NO ARDUINO PROGRAMMING NEEDED
« Pduino: An extension for Pure Data to
communicate directly with the Arduino

« The main object is [arduino], which sends and
receives data directly from the Arduino.

PROs:

Easiest way to communicate with Arduino

No C++ (Arduino) programming knowledge
required

CONs:

Can’t handle standard messaging protocols like
MIDI or OSC

Not possible to do any additional computation on
the microcontroller (ie., conditional logic, filtering
and scaling data)

Can run slow (on Arduino and Pd)

Installing:

In PD, install the ‘pduino’ and ‘comport’ externals
(‘Help’ menu > Find Externals)

Add to the PD file search path

In Arduino IDE, for to File > Examples > Firmata;
open and upload the StandardFirmata sketch.

Resources: https://qgitlab.com/johnnyvenom/javeriana

pinModes for Arduino Leonardo:

« Digital pinsare 0 - 13

» Analog pins are A0 — A5 (also function as digital pins
18 — 22)
also A6 — A11 on digital pins 4, 6, 8, 9, 10, 11 12

« Available pinModes are:

O INPUT (digital)
1 OUTPUT (digital)

2 ANALOG

» look for ~ sign on board
4 SERVO (digital, 2 — 13)

(analog, but assign to their digital pin #s)
3 PWM (digital, 3, 5, 6, 9, 10, 11, 13)

LIST OF AVAILABLE PIN MODES

[pinMode

11

input(

EinMode

11

output

[pinMode

16

analog(

EinMode

11

pwm(

EinMode

11

servo(

pinMode 11 ©
pinMode 11 1
pinMode 16 2
pinMode 11 3

pinMode 11 4

digital input

digital output

analog input

pulse width modulation (output)

servo (output)

Arduino Leonardo Pinout

LED_BUILTIN_RX PBO
LED_BUILTIN_TX PD5

PC7

® IOREF
® RESET

3.3V, ® 33V

SV 4 ®sv | &
e

@ cnp|

{GND} ®oND|2

m
@ vin|®

“r

ONINQuv

HHHHTT

mnRanNn N
EEESTEVVYNY

L

A
ga° | o

S LON
'zpo'a
AR

e S—
WWW . ARDUINO.CC

& O
MADE IN ITALY

0ddVvNO3

]

] 1

Z 3 (~WMd) TVLIDIA

A~V
SHENWAUOGON

AVR (DIGITAL (ANALOG) GIRINED) SERIAL (SPI) 12¢ @) CRETISD

2014 by Bouni, 2016 bperrybap
BY SA Photo by Arduino.cc

Resources: https://qgitlab.com/johnnyvenom/javeriana

~duino:
Receive
data
from
Arduino

@ % pduino_receive_data.pd

|devicesi print avialable ports

0 open correct
port
open $1

close(close port

arduino

|Erint arduinoInfo|

route analog digitaL]
|

set pinModes:
ex: "set digital pin to input"
either way is ok.

inMode 11 0(
inMode 11 input(

* to set analog pins you
need to use their digital pin.
Ex: Pin A0 would be set:

[pinMode 18 analog] or
[pinMode 18 2]

See help file for complete description

[print arduinoData| receive data from Arduino

route 012345 route 012345
5 etc. %

parse Arduino data

Ex: lecture-2/pduino_receive_data.pd

Resources: https://qgitlab.com/johnnyvenom/javeriana

T

® 00 * pduino_send_data.pd [edit]

|devicesi print avialable ports| set pinModes:)
ex: "set digital pin to output”
0 open correct either way is ok.
port inMode 11 1(

1
:) ' open $1
' inMode 11 output(
close(close port]|
digital 11 1(turn pin on|
\ _t digital 11 O(turn pin off|
arduino

-tO |3rint arduinoInfo|
Q \ 1 [print arduinoData| receive data from Arduino]|

See help file for complete descriptionl

Ex: lecture-2/pduino_send_data.pd

Resources: https://qgitlab.com/johnnyvenom/javeriana

“duinO:;
Control
a simple
synth i

~D

- connect data from Arduino to synth parameters

(] & pduino_receive_data.pd
devices(print avialable ports set pinModes:

ex: "set digital pin to input"
either way is ok.

pinMode 11 ©
pinMode 11 input

open correct

close port

See help file for complete description

[a rduino

print arduinoInfo
print arduinoData

receive data from Arduino

&oute analog digital
|

[Foute © 12 34 5] [route 0 1234 5]

etc.

parse Arduino data

- Need to scale appropriately with math
- use operators +, -, *, or /; or use [expr]

& subtractive_synth.pd

A BASIC SUBTRACTIVE SYNTH

OSCILLATOR(S)

Do)MIDI note

shasor~ 100 sawtooth osc and sub osc (

FILTER

|Low cutoff freq

sig~

|§0 Q (filter sharpness)

vcf~ ﬂ Low pass filter

audio amplitude scaled from 0 to 1

ENVELOPE |
%D

*~ 1

dac~| audio to soundcard

Ex: lecture-2/subtractive_synth.pd

Resources: https://qgitlab.com/johnnyvenom/javeriana

FPduino:
ranslate
data to
MIDI

mesages

® ® & pduino_receive_data.pd

- to control other commercial softwares or instruments (like Traktor or
Ableton Live), you will probably want to send MIDI messages.

- Need to scale appropriately with math (use operators +, -, *, or

/; or use [expr]

- convert to MIDI using the Pure Data midi objects (see help files

for objects below)

- Need a virtual MIDI device to route the messages:

MacOS: built-in IAC Driver

- Windows: install loopMIDI
- Set this as the MIDI Output Device in Pure Data
- Set as MIDI Input Device in receiving software

- MIDI output

- schedule delayed "note off" message for a note-on

| noteout| [ctlout pgmout| |bendout
touchout| [polytouchout| [midiout
| >
makenote
stripnote - strip "note off" messages

Resources: https://qgitlab.com/johnnyvenom/javeriana

10

Seceive
DI
nesages

o060 % pduino_send_data.pd [edit]

You can also receive MIDI messages from other MIDI-capable
software or hardware

Parse the MIDI data using the Pd objects below (see help files for
usage)

Scale appropriately and send to Arduino to provide active feedback
for an interface

Examples:

A metronome click lighting an LED

Control a servo

piezo speaker

> notein| |ctlin| [pgmin{ [bendin| [touchin midiin

- MIDI input

polytouchin| |[sysexin| |midirealtimein

Resources: https://qgitlab.com/johnnyvenom/javeriana 11

MIDIUSB with Arduino Leonardo

 Certain Arduino models, including the
Arduino Leonardo, can be used directly as
USB MIDI devices, that will natively bind to a
MIDI port and can be used in host software.

* To do this, you need to install the MIDIUSB
library in your Arduino IDE

« ‘Sketch’ menu > Include Library > Manage
Libraries

* Include the library in your sketch, and your
Leonardo will now show up as a MIDI device.

» The library includes functions to send and
receive standard MIDI messages. See
examples (MIDIUSB_write.ino) for usage.

UltraLite mk3 Hybrid @ MIDI Settings A

Input Devices

14 Arduino Leonardo

Output Devices

1: IAC Driver IAC Bus 1

Use Multiple Devices

river Save All Settings

cncel | (OKEN

Resources: https://qgitlab.com/johnnyvenom/javeriana

12

—x: Control other software with Leonardo

Now we will create a basic interface with the provided sensors sending
MIDI messages to software (Ableton Live for this example)

* Return to last week’s Arduino sketches that read sensor data

« Combine this with the MIDIUSB functions to set up some basic controls
for your software — most common will be:

« Control Change
» Noteon and Noteoff messages
« Experiment with Pitch Bend, Aftertouch, or Program Change.

Example: lecture-2/sensor_to_midi/sendor_to_midi.ino

Resources: https://qgitlab.com/johnnyvenom/javeriana 13

..and control Leonardo with other software

Of course, we can also send MIDI the other way too, so our other software
can send MIDI messages directly to our interface (the Leonardo)

* in your other music software (DAW, soft synth, DJ software, etc.), choose
relevant parameters that can be sent out via MIDI to provide teedback to
the performer.

« See the Arduino ‘'MIDIUSB_read.ino’ example, and modity it to control
some things on the Leonardo (ie., blink LED in time, etc.).

Resources: https://qgitlab.com/johnnyvenom/javeriana 14

Review of technigues:

 Pduino: send and receive data between Arduino and
Pd via serial.

« Good: quick and easy. No C++ needed.

- Bad: overly simple, can only send serial data (numbers), can’t
handle OSC or MIDI

« Pd MIDI formatting: send and receive MIDI between Pd
and other music software.

« Good: create custom digital interfaces in Pd; translate other
input data into standard MIDI format

+ Bad: If connecting with an interface, need a middle Pd layer
to do conversion

« MIDIUSB: Communicate directly between certain
Arduinos (incl. Leonardo) and other music software.

« Good: no need for Pd layer, can write more sophisticated
routines to be processed on the Arduino

« Bad: Can only handle MIDI messages
+ Good/bad? Requires C++ (Arduino) programming

Resources: https://qgitlab.com/johnnyvenom/javeriana 15

VWorkshop (if there is still time):

» Review the model of a Digital Musical Instrument:

INPUT Gestures MAPPING Sound output
>
Gestural Controller Sound Production "))
>

Primary feedback

 Create your own with all of the elements: gestural controller (Arduino and sensors), mappings, sound
production (can be other software), and feedback.

* You can use whatever techniques work best for your use case, and use more than one technique if it suits.

Resources: https://qgitlab.com/johnnyvenom/javeriana 16

