
John Sullivan
Centre for Interdisciplinary Research in Music Media and Technology

Input Devices and Music Interaction Laboratory
john.sullivan2@mail.mcgill.ca

Input Devices and
Music Interaction Laboratory

Gesture acquisition &
feedback
Sending, receiving and parsing serial and MIDI data
- Arduino <-> Pure Data
- Pure Data <-> other software
- Arduino <-> other software

Pontifica Universidad JaverianaInterfaces Digitales para Actos en Vivo: Principos y Personalization

Centre for Interdisciplinary Research
in Music Media and Technology

Schulich School of Music
Ecole de musique Schulich

mailto:john.sullivan2@mail.mcgill.ca

2Resources: https://gitlab.com/johnnyvenom/javeriana

Note: Materials from my lectures (slides,
Pd patches, etc.) are online and can be
downloaded from:

download here

1. Gesture acquisition with Arduino & Pd
• A microcontroller (Arduino) has 2 types of pins for receiving (and

sending):
• Analog - can read continuous voltages between 0 and 5 volts

• Arduino analog range is 0 – 1023 (10 bit sampling ADCs)
• Pins A0 – A5
• Sensors: potentiometer (knob), temperature sensor, fader, light sensor, etc.

• Digital - can read or write values 1 or 0 (HIGH or LOW)
• Sensors: buttons & switches
• Additionally digital pins 3, 5, 6, 9, 10, 11, 13 (on Leonardo) are equipped

with Pulse Width Modulation, allowing them to output analog values from 0 –
255. (Ex. dim an LED)

• Arduinos send and receive data from other devices via serial
communication (UART – universal asynchronous transmitter-
receiver) connected to another device via USB.

3Resources: https://gitlab.com/johnnyvenom/javeriana

Firmata and Pduino
• The next several slides cover the Pduino library for Pure Data.

Regrettably, due to an undocumented compatibility issue:
• Pduino is not compatible with Arduino Leonardo and

Windows.
• It does work running Leonardo with MacOS, however it can be

buggy.
• Alternatives:

• A) Use a different Arduino (Uno, for instance)
• B) Don’t use Pduino and use OSC for communicating between

Arduino and Pure Data (See Lecture 3).

4

Firmata and Pduino
• The fastest and easiest way to get sensor

data into Pure Data.
• Firmata: A protocol for communicating with

Arduino from a computer via serial port.
• A standard Firmata sketch is loaded onto the

Arduino, and all commands to control it are
send directly from software (Pure Data)

• NO ARDUINO PROGRAMMING NEEDED

• Pduino: An extension for Pure Data to
communicate directly with the Arduino

• The main object is [arduino], which sends and
receives data directly from the Arduino.

5

PROs:
• Easiest way to communicate with Arduino
• No C++ (Arduino) programming knowledge

required

CONs:
• Can’t handle standard messaging protocols like

MIDI or OSC
• Not possible to do any additional computation on

the microcontroller (ie., conditional logic, filtering
and scaling data)

• Can run slow (on Arduino and Pd)

Installing:
• In PD, install the ‘pduino’ and ‘comport’ externals

(‘Help’ menu > Find Externals)
• Add to the PD file search path
• In Arduino IDE, for to File > Examples > Firmata;

open and upload the StandardFirmata sketch.

Resources: https://gitlab.com/johnnyvenom/javeriana

pinModes for Arduino Leonardo:
• Digital pins are 0 – 13

• Analog pins are A0 – A5 (also function as digital pins
18 – 22)

• also A6 – A11 on digital pins 4, 6, 8, 9, 10, 11 12

• Available pinModes are:
• 0 INPUT (digital)
• 1 OUTPUT (digital)
• 2 ANALOG (analog, but assign to their digital pin #s)
• 3 PWM (digital, 3, 5, 6, 9, 10, 11, 13)

• look for ~ sign on board
• 4 SERVO (digital, 2 – 13)

6Resources: https://gitlab.com/johnnyvenom/javeriana

Pduino:
Receive
data
from
Arduino

7

* to set analog pins you
need to use their digital pin.
Ex: Pin A0 would be set:

[pinMode 18 analog] or
[pinMode 18 2]

Resources: https://gitlab.com/johnnyvenom/javeriana

Ex: lecture-2/pduino_receive_data.pd

Pduino:
Send
data
to
Arduino

8Resources: https://gitlab.com/johnnyvenom/javeriana

Ex: lecture-2/pduino_send_data.pd

Pduino:
Control
a simple
synth in
PD

9

- connect data from Arduino to synth parameters
- Need to scale appropriately with math
- use operators +, -, *, or /; or use [expr]

Resources: https://gitlab.com/johnnyvenom/javeriana

Ex: lecture-2/subtractive_synth.pd

Pduino:
Translate
data to
MIDI
mesages

10

- to control other commercial softwares or instruments (like Traktor or
Ableton Live), you will probably want to send MIDI messages.

- Need to scale appropriately with math (use operators +, -, *, or
/; or use [expr]

- convert to MIDI using the Pure Data midi objects (see help files
for objects below)

- Need a virtual MIDI device to route the messages:
- MacOS: built-in IAC Driver
- Windows: install loopMIDI
- Set this as the MIDI Output Device in Pure Data
- Set as MIDI Input Device in receiving software

Resources: https://gitlab.com/johnnyvenom/javeriana

Receive
MIDI
mesages

11

- You can also receive MIDI messages from other MIDI-capable
software or hardware

- Parse the MIDI data using the Pd objects below (see help files for
usage)

- Scale appropriately and send to Arduino to provide active feedback
for an interface

- Examples:
- A metronome click lighting an LED
- Control a servo
- piezo speaker

Resources: https://gitlab.com/johnnyvenom/javeriana

MIDIUSB with Arduino Leonardo
• Certain Arduino models, including the

Arduino Leonardo, can be used directly as
USB MIDI devices, that will natively bind to a
MIDI port and can be used in host software.

• To do this, you need to install the MIDIUSB
library in your Arduino IDE

• ‘Sketch’ menu > Include Library > Manage
Libraries

• Include the library in your sketch, and your
Leonardo will now show up as a MIDI device.

• The library includes functions to send and
receive standard MIDI messages. See
examples (MIDIUSB_write.ino) for usage.

12Resources: https://gitlab.com/johnnyvenom/javeriana

Ex: Control other software with Leonardo
Now we will create a basic interface with the provided sensors sending
MIDI messages to software (Ableton Live for this example)
• Return to last week’s Arduino sketches that read sensor data
• Combine this with the MIDIUSB functions to set up some basic controls

for your software – most common will be:
• Control Change
• Noteon and Noteoff messages
• Experiment with Pitch Bend, Aftertouch, or Program Change.

13Resources: https://gitlab.com/johnnyvenom/javeriana

Example: lecture-2/sensor_to_midi/sendor_to_midi.ino

...and control Leonardo with other software
Of course, we can also send MIDI the other way too, so our other software
can send MIDI messages directly to our interface (the Leonardo)
• in your other music software (DAW, soft synth, DJ software, etc.), choose

relevant parameters that can be sent out via MIDI to provide feedback to
the performer.

• See the Arduino ‘MIDIUSB_read.ino’ example, and modify it to control
some things on the Leonardo (ie., blink LED in time, etc.).

14Resources: https://gitlab.com/johnnyvenom/javeriana

Review of techniques:
• Pduino: send and receive data between Arduino and

Pd via serial.
• Good: quick and easy. No C++ needed.
• Bad: overly simple, can only send serial data (numbers), can’t

handle OSC or MIDI

• Pd MIDI formatting: send and receive MIDI between Pd
and other music software.

• Good: create custom digital interfaces in Pd; translate other
input data into standard MIDI format

• Bad: If connecting with an interface, need a middle Pd layer
to do conversion

• MIDIUSB: Communicate directly between certain
Arduinos (incl. Leonardo) and other music software.

• Good: no need for Pd layer, can write more sophisticated
routines to be processed on the Arduino

• Bad: Can only handle MIDI messages
• Good/bad? Requires C++ (Arduino) programming

15Resources: https://gitlab.com/johnnyvenom/javeriana

Workshop (if there is still time):
• Review the model of a Digital Musical Instrument:

16

Gestural Controller Sound Production

INPUT Gestures MAPPING

Primary feedback

Sound output

• Create your own with all of the elements: gestural controller (Arduino and sensors), mappings, sound
production (can be other software), and feedback.

• You can use whatever techniques work best for your use case, and use more than one technique if it suits.

Resources: https://gitlab.com/johnnyvenom/javeriana

