
John Sullivan
Centre for Interdisciplinary Research in Music Media and Technology

Input Devices and Music Interaction Laboratory
john.sullivan2@mail.mcgill.ca

Input Devices and 
Music Interaction Laboratory

Extended topics
- Open Sound Control via Arduino
- Indirect gesture acquisition
- Inter-application audio routing

Pontifica Universidad JaverianaInterfaces Digitales para Actos en Vivo: Principos y Personalization

Centre for Interdisciplinary Research 
in Music Media and Technology

Schulich School of Music
Ecole de musique Schulich

mailto:john.sullivan2@mail.mcgill.ca


Open Sound Control (OSC)
• REVIEW:

• network communication protocol 
developed at CNMAT (U. C. Berkley)

• Can send/receive many different 
data types, most importantly: float, 
int, string, lists of data

• custom, human readable, and 
hierarchical address structure (URL 
style)

• Can communicate over network via 
UDP or TCP protocols
• We are using UDP (User Datagram 

Protocol)
• ..or can use serial port (with Arduino)

2

• Why OSC?
• Handle more complex communications
• Manage many data streams
• Send data over networks
• Multi-user performance
• Working with non-standard (non-MIDI 

capable) instruments
• OSC has become a widely supported 

industry standard for music and multimedia 
applications where flexible networked 
communications is needed.

Resources: https://gitlab.com/johnnyvenom/javeriana



Open Sound Control (OSC)

3

Some example OSC messages: 

/knob 255
/myController/button 1
/myController/faders/1 0.0002
/myController/faders/2 0.91273
/myController/faders/3 0.26473
/myController/XYZdeg 99 340 201
/myController/status hello
/myController/status Everything ok.

*will send as 2 strings

/player1/buttons/1 1
/player1/buttons/2 0
/player1/buttons/3 0
/player1/knobs/1 255
/player1/knobs/2 127
/player1/knobs/3 0
/player2/buttons/1 0
/player2/buttons/2 1
/player2/buttons/3 0
/player2/knobs/1 11
/player2/knobs/2 255
/player2/knobs/3 200

/player3/buttons/1 0
/player3/buttons/2 0
/player3/buttons/3 1
/player3/knobs/1 100
/player3/knobs/2 0
/player3/knobs/3 0
/player4/buttons/1 1
/player4/buttons/2 1
/player4/buttons/3 1
/player4/knobs/1 255
/player4/knobs/2 255
/player4/knobs/3 255

etc...

Resources: https://gitlab.com/johnnyvenom/javeriana



OSC in Pure Data
• In Pd, we are using the ‘mrpeach’ 

external package, which provides a 
suite of OSC objects.
• Sending over UDP: 

• [packOSC] to format data 
• [udpsend] with:

• Recipient IP address (can use 127.0.0.1 
for internal routing)

• Recipient port # (between 0 and 65535)
• https://www.lifewire.com/popular-tcp-

and-udp-port-numbers-817985

4

Ex: lecture-3/send_OSC.pd

Resources: https://gitlab.com/johnnyvenom/javeriana

https://www.lifewire.com/popular-tcp-and-udp-port-numbers-817985


OSC in Pure Data
• Receiving: 

• [udpreceive] with: 
• listening port #
• (optional) IP address

• [unpackOSC] to get data 
• [routeOSC] to parse data

5

Ex: lecture-3/receive_OSC.pd

• Optional: 
• You can stream motion data from a 

smartphone with OSC.
• Free apps: 

• Android: hookOSC
• iOS: Mrmr
• or TouchOSC (Android/iOS but not 

free)

Resources: https://gitlab.com/johnnyvenom/javeriana



OSC with Arduino (via serial)
• We can read and write OSC messages directly on the Arduino as well. 

• To transmit to a connected computer via USB, it is easiest to use the serial port. 
• Arduino: 

• Install the OSC external library
• Uses SLIP encoding (Serial Line Internet Protocol) to format the OSC messages for serial transmission 

(included in OSC lib)
• Include “OSCmessage.h” and “SLIPEncodedSerialUSB.h” in your sketch

• See examples:
• lecture-3/Arduino/OSC_arduino_to_pd
• lecture-3/Arduino/OSC_pd_to_arduino

• Pure Data:
• Use [comport] object to send/receive from serial port
• Arduino -> Pd: use [slipdec] -> [unpackOSC] from mrpeach to decode data
• Pd -> Arduino: use [packOSC] -> [slipenc] to encode data

6Resources: https://gitlab.com/johnnyvenom/javeriana



OSC Arduino to Pd

7

Ex: lecture-3/Arduino/OSC_arduino_to_pd Ex: lecture-3/Pure Data/OSC_arduino_to_pd.pd

Resources: https://gitlab.com/johnnyvenom/javeriana



OSC Pd to Arduino

8

Ex: lecture-3/Pure Data/OSC_pd_to_Arduino.pd Ex: lecture-3/Arduino/OSC_pd_to_arduino

Resources: https://gitlab.com/johnnyvenom/javeriana



Indirect Gesture Acquisition

• Gesture can be captured in at 
least 3 different ways: 
• direct acquisition (using 

sensors to measure the 
physical actions of the 
performer)

• indirect acquisition (analyze 
the structural properties of 
sound being produced by the 
instrument/performer)

• physiological acquisition 
(biosignals – brain (EEG), 
neuromusciular (EMG), skin 
conductance (GSR), etc.)

9

• Sophisticated audio feature extraction 
requires a solid knowledge of using the 
Fourier Transform and FFT analysis 
techniques which are beyond the scope of 
this course. 

• However, Pure Data provides 2 objects that 
let us get some basic information from an 
audio signal.

Resources: https://gitlab.com/johnnyvenom/javeriana



sigmund~ 

10

• in Pd, we can read a sound file or take an audio 
stream and analyze it for pitch and amplitude using 
[sigmund~]. 

• Pitch tracking will be most accurate with a 
monophonic signal

• We can set an amplitude threshold and detect 
transients as well, or follow general amplitude 
contours. 

• These could be used as control variables so that live 
instrumental performance can in turn control other 
musical parameters, connected to other software or 
hardware using MIDI or OSC messages. 

• This is an example of ‘indirect gesture acquisition’.

Resources: https://gitlab.com/johnnyvenom/javeriana

Ex: lecture-3/Pure Data/audio_feature_extraction.pd



bonk~
• Pd also provides the [bonk~] 

object for attack detection 
and spectral analysis. 
• By playing with the high and 

low thresholds, you can get 
good results for attack 
detection. 

11Resources: https://gitlab.com/johnnyvenom/javeriana

Ex: lecture-3/Pure Data/transient_detection_with_bonk.pd



Inter-application audio routing 

12

• A typical usage of this method of control will be to analyze data 
from another application (a DAW, DJ software, Spotify, etc.)

• To achieve this you need a utility application that allows audio to 
be flexibly routed internally between applications. 

• Recommended:
• MacOS: SoundFlower (free)
• Windows: Virtual Audio Cable (free trial)

• There are other Windows utilities that are free, but will require more 
configuration and experimentation. Try a Google search for windows 
route audio between applications.

• Once installed you should see input and output devices in your 
computers audio settings. 
• Example: route audio from Ableton Live to Pure Data on a Mac: 

• In Live Preferences, select Soundflower (2ch) as output device
• In Pure Data, select Soundflower (2ch) as input device
• In Pd, use the [adc~] object to get the audio device’s signal into your 

patch. 

Resources: https://gitlab.com/johnnyvenom/javeriana

Soundflower(Mac)
https://rogueamoeba.com/freebies/soundflower/

Virtual Audio Cable (Windows)
https://vac.muzychenko.net/en/index.htm

https://rogueamoeba.com/freebies/soundflower/
https://vac.muzychenko.net/en/index.htm

